Hybrid-Neuro-Fuzzy System and Adaboost-Classifier for Classifying Breast Calcification
نویسندگان
چکیده
One of the major developments in machine learning in the past decade is the Ensemble method, which finds a highly accurate classifier by combining many moderately accurate component classifiers. In this paper, we propose a classifier of integrated neuro-fuzzy system with Adaboost algorithm. It is called Hybrid-neuro-fuzzy system and Adaboost-classifier classifier. Herein, Adaboost creates a collection of component classifiers by maintaining a set of weights over training samples and adaptively adjusting these weights after each iteration, and it is main architecture. The weak learner in Adaboost we used is SONFIN which is a neuro-fuzzy system. And, there is on-line learning ability in SONFIN. Finally, to demonstrate the capability of our proposed classifier, training and testing in different datasets including IRIS datasets, WISCONSIN breast datasets, and CSMU breast datasets are done. The contributions of this paper include implementation of Hybrid-neuro-fuzzy system and Adaboost-classifier for the classification and a classification accuracy of over 98% when training and testing on the IRIS dataset, 99% when training and testing on the WISCONSIN dataset, and 98.8% when training and testing on the CSMU Dataset. This means that our proposed classifier is good for classification and can be applied to variety field in the real world.
منابع مشابه
Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملApplication of Adaptive Neuro-Fuzzy Inference System for Information Secuirty
Problem statement: Computer networks are expanding at very fast rate and the number of network users is increasing day by day, for full utilization of networks it need to be secured against many threats including malware, which is harmful software with the capability to damage data and systems. Fuzzy rule based classification systems considered as an active research area in recent years, due to...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کامل